Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa

نویسندگان

  • Andrea Brenna
  • Benedetto Grimaldi
  • Patrizia Filetici
  • Paola Ballario
چکیده

In Neurospora crassa and other filamentous fungi, light-dependent-specific phenomena are regulated by transcription factors WC-1 and WC-2. In addition to its transcriptional activity, WC-1 is able to directly sense light stimuli through a LOV sensor domain. Its location in the nucleus and heterodimerization with WC-2, together with the presence of a zinc-finger DNA-binding domain and an environmental sensor domain, all resemble the functional evolutionary architecture adopted by vertebrate nuclear receptors (NRs). Here we describe a scenario in which WC-1 represents a functional orthologue of NRs and acts through association with the chromatin-modifying coactivator NGF-1, which encodes a homologue of the yeast Gcn5p acetyltransferase. To support this view, we show a direct association between WC-1 and NGF-1 that depends on a WC-1 region containing a conserved functional LXXLL motif, a signature previously described as being an exclusive feature of NR/coactivator interaction. Our data suggest that a WC-1/NGF-1 complex is preassembled in the dark on light-inducible promoters and that, after exposure to light stimulation, NGF-1-associated HAT activity leads to histone H3 acetylation and transcriptional activation. Finally, we provide evidence for a NGF-1-independent acetylated form of WC-1. Overall our data indicate that Neurospora and higher eukaryotes share a common mechanism for the signal transduction of environmental stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurospora crassa Light Signal Transduction Is Affected by ROS

In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white co...

متن کامل

White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa.

A saturating genetic dissection of 'blind' mutants in Neurospora crassa has identified a total of two non-redundant loci (wc-1 and wc-2) each of which is required for blue-light perception/signal transduction. Previously, we demonstrated that WC1 is a putative zinc finger transcription factor able to bind specifically to a light-regulated promoter. Here, we present the cloning and characterizat...

متن کامل

Fungal photobiology: a synopsis

Fungi respond and adapt to many environmental signals including light. The photobiology of fungi has been extensively investigated, but in recent years the identification of the first fungal photoreceptor, WC-1 in the ascomycete Neurospora crassa, and the discovery that similar photoreceptors are required for photoreception in other ascomycete, basidiomycete and zygomycete fungi has allowed the...

متن کامل

A novel cryptochrome-dependent oscillator in Neurospora crassa.

Several lines of evidence suggest that the circadian clock is constructed of multiple molecular feedback oscillators that function to generate robust rhythms in organisms. However, while core oscillator mechanisms driving specific behaviors are well described in several model systems, the nature of other potential circadian oscillators is not understood. Using genetic approaches in the fungus N...

متن کامل

Simple Sequence Repeats Provide a Substrate for Phenotypic Variation in the Neurospora crassa Circadian Clock

BACKGROUND WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012